Healthcare providers have long recognized that new strategies are needed for diabetes education. There is an abundance of evidence that shows that group diabetes education is more effective than individual education. Traditional group education, however, has been a didactic intervention—a classroom style of one-way flow of information where the educator provides instructional materials and lectures while the patients listen. Diabetes, however, “is a complex chronic disease that requires active involvement of patients in its management,” according to the Centers for Disease Control and Prevention (CDC), further emphasizing the unique patient engagement piece of the Conversation Map approach.

The ADA in 2007 revised its national standards for diabetes self-management education and support (DSME/S) to focus on a more action-oriented style of learning, one that is patient-empowering and conversation-based. The learning map concept has been used for corporate learning purposes for over 30 years, but it was not used for disease management until Healthy Interactions, LLC created the diabetes Conversation Map education tools in 2005 and introduced them in Canada the same year. The additional Map programs were developed specifically for diabetes.
for healthcare in collaboration with the ADA and sponsored by Merck and Co., Inc., in the US. and in collaboration with the IDF and sponsored by Eli Lilly globally.

Outcome-driven and flexible, the Conversation Map approach is built on a foundation of evidence-based education principles and clinical guidelines that include the International Standards for Diabetes Education. In 2007, the Map tools were developed in collaboration with the American Diabetes Association to ensure that they meet the requirements of the DSME/S curriculum. The program was launched internationally the next year, beginning with the UK. Now, Conversation Map tools are the world’s most deployed patient engagement and education program. Millions of people in more than 120 countries have experienced the Conversation Map approach guided by more than 60,000 healthcare professionals trained in the application of Map tools.

The Conversation Map methodology promotes critical thinking and patients taking responsibility for their own learning and action. The Map tools group model puts patients at the center of the learning process, creating an experience in which they develop personalized self-management solutions unique to their own experiences and challenges. Within the safe environment of their peer group, they are not told how to think or what to do, but are instead coached through the Map tools process, encouraged to think for themselves, to discuss, debate, and discover what is meaningful to them regarding the management of their diabetes. In so doing, participants are more actively creating ownership of their condition and internalizing management responsibilities that are not apparent through conventional engagement processes. Building self-confidence and skills in problem solving, Map tools promote the acceptance and implementation of the changes that need to be made in addition to the development of a trusting relationship between the educator and the patient.

At the same time, Map tools improve the ability of diabetes educators to connect with patients, influencing their clinical and psychological outcomes. Compared to traditional care group DSME/S, educators report that Map tools increase session attendance, make group facilitating more interactive and engaging, stimulate discussion and enhance peer interaction.

How it Works

The diabetes Conversation Map program has a core curriculum of four Map tools that address all of the components and content needs of a person with diabetes (PWD). Each Map tool covers content related to healthy eating, physical activity, self-monitoring of blood glucose, risk reduction, medication taking, coping and overall situational problem solving. The group size is 3-10 persons. As far as frequency, standard application of the Map tools calls for 1-2 hours at most spent on each Map, with one session every 1-2 weeks.

Sessions are primarily patient-directed discussions and emphasize shared problem-solving in diabetes self-care: troubleshooting blood glucose levels, for example, or exploring the challenges and solutions of motivation for healthy eating and physical activity. In the end, participants receive very tailored, individualized education, but in the comfort of a group setting. Each patient sets long- and short-term goals that are meaningful to him and in accordance with his diabetes care team.

Information is simple and practical, with its delivery based on adult learning principles and learner-centered methods. The Map comes with a Facilitator Guide that instructs the educator to ask the right questions at the right time in order to stimulate productive, informative and meaningful learning. The participants become activated and thus are more likely to follow through with behavior changes. Educators gain new skills related to facilitation and group dynamic management. The results are mutualistic: participants and educators learn from each other. Facilitator/educators listen actively to their patients and can more accurately assess patients’
Healthy Interactions

needs and subsequently provide individualized interventions.

All Map tools facilitators are trained the same way, regardless of the city, state or country in which they reside. However, Map tools applications do follow clinical guidelines specific to each country and are presented in the appropriate language. However, the standardized methodology is the same and the patient experience is consistent worldwide. Therefore, the participant experience is standardized, and each patient experiences the same level of engagement, with the exception of variation in cultural attributes.

Outcomes

What is the result of applying Conversation Map tools to diabetes self-management education? A wealth of research conducted by independent third-party entities in 11 countries validates the efficacy of Map tools in improving people’s lives. These studies have been cataloged and the outcomes associated with each have been assessed. They have been categorized, based on the data points included, as clinical, economic, behavior and attitude. Many studies fall into more than one of these categories. Of the 35 studies that have been collected, 23 are clinical, 2 are economic, 20 are behavioral and 23 concern attitude. Below are results from 13 studies that included data for HbA1c, blood pressure, cholesterol and/or weight-change measures. Some clinical studies were excluded due to the fact that specific baseline and/or post-study measurements were missing, inhibiting the calculation of percent change. (Note: Please see the entire research study catalogue for details on each individual study, including those that were excluded from the table below. For details on how this table was constructed, please see the appendix.)

<table>
<thead>
<tr>
<th>Research By Category</th>
<th>Number of Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>10</td>
</tr>
<tr>
<td>Economic/Cost</td>
<td>15</td>
</tr>
<tr>
<td>Behavior</td>
<td>20</td>
</tr>
<tr>
<td>Attitude</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Patients with HbA1c <7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Population N = 5,937</td>
</tr>
<tr>
<td>Pre CMap</td>
</tr>
<tr>
<td>37.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Henry Ford Health Service Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>% LDL<100</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>General Population N = 6,007</td>
</tr>
<tr>
<td>Pre CMap</td>
</tr>
<tr>
<td>52.3%</td>
</tr>
</tbody>
</table>

Attitude Outcomes: Empowerment and Engagement

- Comparing Map tools groups with traditional care groups, researchers at San Joaquin Hospital in Stockton, California, found that only 11% of patients in the traditional care groups returned for more than one session, while 48% of patients in the Map tools groups returned for additional sessions. Enjoyment of the sessions was reported by 97% of patients in the Map tools groups vs. 57% in traditional care groups. 91% of patients stated that they learned a lot from Map tools vs. 52% in the traditional care groups.6,7

- The Baqai Medical University in Karachi, Pakistan, found patient confidence and empowerment, as well as willingness, ability and preparedness for diabetes self-management. Before taking patients through the standard four Map tools sessions, 52% of patients “believed a doctor is responsible for DSME.” After Map tools, 97% believed that they themselves carried this responsibility. The proportion who reported that they felt confident managing their diabetes themselves went from 32% to 76%, and the belief in their ability to start making changes grew from 19% to 52%.8

- The Henry Ford Health System is among many organizations that have adopted the Map tools as a standard curriculum in diabetes education. Following the implementation of Map tools at the Henry Ford Center in Taylor, Michigan, diabetes educators reported that, “Patients have told us that they enjoy the class structure with the Maps and have made friendships and informal support groups outside the classes due to the opportunity of being in a more interactive setting and having the opportunity to get better acquainted with people than in a traditional class setting.”9
After offering the Map tools program in 2007, the Rutgers Cooperative Extension in Flemington, New Jersey found that 97% of participants surveyed by mail rated the overall sessions “valuable” or “very valuable,” 98% reported feeling “better able to discuss their diabetes management with their physician,” and 96% “rated the format as an ‘effective’ or ‘very effective’ way to learn about diabetes.”

Of Map tools educators in the UK, according to a 2011 survey, 93% reported that the sessions stimulated discussion and peer interaction and 84% reported that the sessions made group facilitating more interactive and engaging.

Of participants in the Rutgers Cooperative Extension study, 94% reported that they were using what they had learned at the training sessions. Skills and behaviors that improved the most included budgeting carbohydrate foods better when having meals and snacks, controlling food portions, reading food labels for carbohydrate and fat content, and discussing health issues with their physician, pharmacist, or other healthcare provider.

Studies in Japan, Germany and Spain also found improvement in patients’ levels of knowledge regarding diabetes and their motivation for self-care.

Engagement in the Conversation Map approach is also sustained using online tools to provide education in between the Map sessions or after. The online education and engagement align with the new DSME/S standards that include an element of support. The majority of self-care management happens outside of the classroom where the person with diabetes needs to create habits and behaviors to improve daily metabolic markers. For example, a 2014 study showed that participants who used online and mobile applications in addition to personal contact lost the greatest amount of weight. Consequently, Healthy Interactions added the Conversation Map to support goal-setting between Map sessions as well as after DSME/S is completed to its offerings. Strong evidence indicates that people with diabetes who have access to self-management programs that have in-person, online and mobile features have better outcomes as compared to their peers who attempt disease management on their own.

Behavior Outcomes: Self-Care Management

Lotung Poh-Ai Hospital in Taiwan conducted a sub-group analysis of Map 2: “Diet and Exercise.” The analysis showed that metabolic equivalents (mets) increased from 3.3 to 6.3 mets, carbohydrate intake decreased from 10.4 to 9.7 servings per day, and vegetable intake increased from 2.6 to 3.2 servings per day.

A study in Taichung, Taiwan, found that the Map tools program showed significant improvement in patients’ “interpersonal relationships, diet control, exercise control, blood glucose self-monitoring behavior and adherence to the recommended regimen.” The study concluded: “A three-month intervention of a structured education using Conversation Map is more effective than a traditional usual care diabetes education.”

San Joaquin Hospital found that the retinopathy screening rate after Map sessions increased by 210% and foot exam rates increased by 125%.

Clinical Outcomes

At Chung Shang Medical University Hospital in Taiwan, a study comparing the outcomes of traditional groups to Map tools groups found a greater reduction of postprandial glucose and fewer hypoglycemic events in the Map tools groups.

A study in Michigan found that implementing Map tools greatly improved the portion of people with diabetes who had their HbA1c <7%. For years, the Henry Ford Health System had used a diabetes management program that they had created themselves. 37.5% of their patients were able to control their diabetes using this method. However, once they implemented the Map Tools program, 46.2% of the diabetic population had their diabetes under control.

A 2014 report from Taichung, Taiwan, reported a 43% reduction of hypoglycemia incidents when Map tools vs. traditional group education.

A post-session study of Map tools results from Italy showed improved glycometabolic control, with fasting glycemia levels decreasing from 152.9 mg/dL to 138.2 mg/dL; a reduction in HbA1c from 8.2% to 7.8%; and a decline in BMI from 27.6 kg/m² to 25.5 kg/m².

A study at Lotung Poh-Ai Hospital in Taiwan used Map tools over a six-month period and found that HbA1c had decreased from 8.1% to 7.6%, while the frequency
of self-monitoring of blood glucose increased from 2.1 to 3.2 times per week.12

- Patients in Israel with baseline HbA1c measurements greater than 8% showed an average HbA1c reduction of 0.6% following Map session participation.16

- After Map sessions at South University School of Pharmacy and Tuttle Army Health Clinic in 2009, the researchers reported a 1.05% decrease in HbA1c in 85% of their participants and an 0.05% increase in HbA1c in 15% of participants while maintaining their HbA1c at less than 7%. Other clinical measurements reported include a 42 mg/dL average decrease in cholesterol in 70% of participants, an 114 mg/dL average decrease in triglycerides in 75% of participants, an 11 mg/dL average increase in high-density lipoprotein (HDL) in 55% of participants, and a 29 mg/dL decrease in low-density lipoprotein (LDL) in 55% of participants.16

- According to a Portuguese study, “consistent decrease in HbA1c, achieved independently of weight loss, hints at the impact of sharing solutions among peers by boosting diabetes acceptance, well-being and development of autonomy with DSME.” 17

- A study at Chobu Rosai Hospital in Japan found improvement of HbA1c from 9.6% to 7.6% after three months of Map tools sessions, as well as significant improvement in patient knowledge and motivation.18,19

- At San Joaquin Hospital in Stockton, California, where patients engaged in Map sessions over a four-month period, patients showed a 0.5% reduction in Hb1Ac.6,7

The fact that DSME/S improves the metabolic outcomes of diabetes patients is well-known. A 2014 report by the Australian Diabetes Educators Association showed that DSME/S in Australia produced an average 0.33% reduction in HbA1c, with improvement demonstrated in other measures such as diabetes-related disabilities, patient and career productivity, secondary complications and quality-adjusted life years.20

Utilizing the 0.33% weighted average reduction in HbA1c (range of 0.08% to 0.83%) referenced in the 2014 report by the Australian Diabetes Educators Association as a comparator, the Map tools studies described above demonstrate HbA1c reduction outcomes in the range of 0.27% to 3.35%. Map tools HbA1c reduction outcomes are also comparable to those of anti-diabetes medications (excluding insulin), which reduce HbA1c by 0.5% to 1.50%.21 Medical nutrition therapy (MNT) reduces A1c in the range of 1.0% to 2.0\%22, while insulin realizes an A1c reduction of 1.5% to 3.5%.21

Cost Outcomes: Direct and indirect cost effectiveness

Quite simply, better outcomes lead to lower costs. When people with chronic diseases—diabetes or any other medical condition—have their clinical markers under control, the cost to the social system is significantly reduced.

The social costs of diabetes and its comorbidities including, but not limited to, retinopathy, chronic kidney disease, amputations and coronary heart disease, are substantial. In the U.S. alone, direct medical costs related to diabetes totaled $176 billion in 2012, with productivity loss measured at an...
In the U.S. in 2014, there were an estimated 97,648 hospitalizations due to hypoglycemic events, costing approximately $120 million. According to ADA figures, on average, each patient who cannot successfully manage his disease costs the healthcare system $44,490 annually. In contrast, a diabetic who has successfully managed his diabetes costs less than a third of his peers, at $13,234 annually. DSME/S can substantially reduce such cost burdens. A 2014 report by the Australian Diabetes Educators Association made clear the economic benefits of offering the services of credentialed diabetes educators to people with diabetes. It showed that “Australian healthcare cost savings in 2014 would have totaled an extraordinary $3.9 billion (Australian Dollars) and thousands of lives would improve if diabetes education were made available to all Australians.” In Australian dollars, every dollar spent on diabetes education would generate a savings of more than $16 in healthcare costs. The average cost of $173 per patient per year to provide diabetes education would deliver average healthcare cost savings of $2,827 (93.9%) per patient per year.

This particular study found that Map tools deliver comparable clinical but more cost-effective results.

Diabetes education has evolved from being teacher-centered and content-driven to being more learner-centered and learning-process-driven. The Conversation Map education tools’ success derives from the principle that the solutions to behavior change needed to improve health outcomes are dependent on patient activation, or the extent to which the patient is engaged in the program and thus motivated to seek healthier behavior. Built on a foundation of evidence-based education principles and clinical guidelines, the Map approach is designed to be outcomes-driven and flexible. The Conversation Map tools can be adopted by institutions ranging from small neighborhood clinics to large regional health systems, and they can be integrated into existing support programs at any stage of diabetes management.

Independent studies from countries all around the world where Map tools have been used show improved engagement of diabetics in the learning process, patients’ knowledge regarding their disease, and their understanding of and adherence to diabetes self-management. Also, improvement is seen in their attitudes toward and willingness to participate in group education in addition to their record of completing group education and training, and dramatic improvements in clinical outcomes.

Most compelling about these studies is that each was developed and deployed by an independent healthcare provider (HCP). These HCPs reported what was most meaningful to them from their Map tools experience and what information was required in order to facilitate the program effectively. In Israel, for example, the positive improvements seen in clinical outcomes were the basis for choosing Map tools as a requirement for care in that country’s largest sick fund. In this particular health system, each patient with diabetes is eligible to attend Map sessions provided by skilled nurse educators. In the UK, for another example, Map tools were compared to a national standard curriculum called DESMOND (Diabetes Education and Self-Management for Ongoing and Newly Diagnosed).
The two RCTs were insightful regarding improvements related to best practices. For example, results from the RCTs showed that materials outside of the Map tools overwhelm participants with too much information. The Map itself is enough to convey needed content. Further, since each patient is learning what is meaningful to him or her—they are not learning the same things—knowledge tests will not accurately reflect what they have learned. All patients who enrolled in the studies (both control and intervention groups) are more likely to be engaged in their care because they are already seeking help for managing their diabetes. They do not necessarily reflect the general population, where patients do not have access to diabetes care and are less engaged in their care. Each of the RCT sites is continuing to use the Map tools at their centers, as the Map tools deliver on their program and patient needs. A primary strength of Map tools is that they are most effective when applied to underserved and previously unengaged populations. The program does not require educators to have advanced skills, making it very inclusive and allowing educators to build additional expertise in diabetes education as they gain experience facilitating the program. Because patients enjoy working with Map tools, they are returning for subsequent sessions as the patients establish the peer support needed to motivate them to return. Since Map sessions are fun, engaging and include an element of peer support, the return rate is high.

“A lack of insurance coverage has previously been identified as a barrier to DSMT participation,” according to the CDC. A cap of thirty individual or traditional group diabetes education sessions are typically offered in hospitals or clinics, limiting participation for communities in the area. The vast majority of the global diabetic population may be blocked out by challenges related to access, costs and inadequate insurance or total lack of insurance.

According to the IDF, worldwide, only 5% of people with diabetes receive optimal care. A primary goal of the Map programs is to create access to diabetes education. The less access patients have to diabetes self-management education, the less developed their knowledge, skills and abilities in diabetes self-management. Consequently, Map tools have a larger impact on patient activation, empowerment, knowledge and clinical improvement. In addition, DSME/S has proven to be dose-dependent. The more frequently people engage in DSME/S, the better their outcomes.

An analogy can be found in how the effect of DSME/S on blood glucose differs according to the blood glucose level patients have at baseline. For example, a study by Clalit Health Services in Israel found that Map tools produced no change in HbA1c in patients with HbA1c less than 8%, but they produced a 0.60% decrease in HbA1c in patients with HbA1c greater than 8%.

Another important feature of Conversation Map tools: While over 29,000 diabetes educators have been trained on its use in the US, there are only about 18,000 Certified Diabetes Educators (CDEs) nationwide. Because there are more diabetes Map facilitators than CDEs, more people with diabetes have access to and are receiving DSME/S. The Healthy People 2020 objective is to increase diabetes education by 10%, to a goal of 62% of diabetes education being delivered by skilled diabetes educators. Map tools can be a powerful driving force toward the Healthy People
Healthy Interactions, LLC is contributing to this goal by providing diabetes educators with Map tools and the skills needed to provide formal and structured diabetes education, therefore being the solution to the shortage of CDEs in the US. To meet this need, Healthy Interactions, LLC has trained an additional 9,000 diabetes educators including nurses, dietitians, pharmacists, doctors and physician assistants.

For the diabetes population that does not already receive optimal care, a trained Map tools facilitator who is not an advanced-level diabetes clinician can still assist patients in achieving noteworthy outcomes. Surveys indicate that 80% of diabetes educators say that Map tools make group facilitating more interactive and engaging, 63% say it increases patient interest in diabetes education and 54% respond that they have seen improved patient compliance and outcomes. Independent research studies such as the examples given herein have demonstrated, as described by the researchers at Lotung Poh-Ai Hospital in Taiwan, that “the Diabetes Conversation Map are…effective and interactive tools through the power of peer conversation to facilitate and reinforce behavior changes of diabetes self-management. We shall continue to carry forward and broadly apply in clinical practice.”

Healthy Interactions has added a digital App and coaching platform to DSME/S as it has been shown to produce effective care outcomes. The digital platform is meant to facilitate behavior change between Map sessions as well as provide ongoing self-management education through continuous patient healthcare.

Historically, the interaction between healthcare providers and their patients has been one of great trust and respect, in which the provider would explain to the patients their conditions and recommend a course of action. As chronic conditions have become more prevalent in the population, and people with diabetes continue to live even longer lives than in previous generations, this method of disease management is no longer appropriate. Since clinicians cannot cure diabetes, how can they manage their patients with diabetes so that they are empowered to make the right decisions for themselves?

As in the old story of teaching people to fish rather than simply giving them fish, if patients are simply told what to do, they can never become independent and able to manage their own health. Focusing on behaviors, Conversation Map tools leverage the power of groups and of learning, from peers in similar circumstances, about what does or does not work. Map tools help healthcare providers learn how to ask the right questions at the right time, engage patients in applying what they have learned, and assist them in choosing the self-care paths that are optimal for them as individuals, thereby improving their physical and emotional well-being.

Study after study, in different countries, measured in a variety of ways, has demonstrated that the Conversation Map method drives value for patients, healthcare educators, governments and other entities with financial responsibility for patient populations, proving to be a cost-effective solution for improving the lives of those living with diabetes.
Abstract
Healthy Interactions

10. Survey of United Kingdom healthcare providers done by Healthy Interactions, February 2011.

13. R-TAI-3: Wu YC, Yang YS, Huang CN, Lu YL, Kome-Lius E, Chen YJ, Li CL, Lin YT. Comparing a Structured Diabetes Education Program (Conversation Map™) to Usual Care Education on Self-Management and Self-Care Behaviors in Poorly Controlled Type 2 Diabetes Mellitus. Oral presentation at American Diabetes Association 73rd Scientific Session: 2013, June 21-25; Chicago IL; OR-304; page A78.

Abstract
Healthy Interactions

32. Wayne N, Perez DF, Kaplan DM, Ritvo P. Health Coaching Reduces HbA1c in Type 2 Diabetic Patients From a Lower-Socioeconomic Status Community: A Randomized Controlled Trial: J Med Internet Res 2015; 17(10): e224.

Clinical Data Table Appendix

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Change</td>
<td>p-value</td>
<td>Change</td>
<td>p-value</td>
<td>Change</td>
</tr>
<tr>
<td>R-ISR-2</td>
<td>0.2%</td>
<td><0.05</td>
<td>0.3%</td>
<td><0.05</td>
<td>0.4%</td>
</tr>
<tr>
<td>R-ISR-3</td>
<td>-0.1%</td>
<td>>0.05</td>
<td>-0.2%</td>
<td>>0.05</td>
<td>-0.3%</td>
</tr>
<tr>
<td>R-ISR-4</td>
<td>0.5%</td>
<td><0.05</td>
<td>0.6%</td>
<td><0.05</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Calculations were made simply by subtracting the post-study measurement from the baseline measurement. For example, for R-ISR-2, all patients the baseline measurement was 7.8% and the post-study measurement was 7.6%. The difference is -0.2 percentage points because the HbA1c was reduced by 0.2 percentage points. This is reported as -0.2% in Column 3 but should be interpreted as a reduction of 0.2 percentage points.

All Columns: "p = 0.##" indicates the p value as a test of statistical significance. Generally, a p value of less than 0.05 indicates statistically significant results. "n.s." indicates that the p value is greater than or equal to 0.05 and thus is not significant.

Additional Research Studies and Articles

Research Studies

Articles

58. A-MEX-1: IDEA, Superior School of Medicine of the National Polytechnic Institute, School of Medicine of the National Autonomous University of Mexico, Iberoamericana University, El Llily Mexico. How are we doing on Diabetes? Public Policy Status. IDEA Foundation, Mexico City, July 2014, p. 47.

Glossary

Abbreviations

ADA: American Diabetes Association
BMI: Body Mass Index
CDA: Canadian Diabetes Association
CDC: Centers for Disease Control and Prevention
CM: Conversation Maps (also referred to as Map Tools)
DESMOND: Diabetes Education and Self-Management for Ongoing and Newly Diagnosed
DSME/S: Diabetes Self-Management Education and Support
DSME: Diabetes Self-Management Education
HbA1c: Hemoglobin A1c (clinical metric for blood glucose)
HDL: High-density lipoprotein (clinical metric for “good” cholesterol)

HCP: Healthcare Professional
IDF: International Diabetes Federation
LDL: Low-density lipoprotein (clinical metric for “bad” cholesterol)
MET: Metabolic Equivalent
T2DM: Type 2 Diabetes Mellitus
PWR: Person with Diabetes
RCT: Randomized control trial (gold standard for clinical trial research design)
WHO: World Health Organization

Terms further defined

Usual-care group: study participants who serve as a control and receive a type of care that is something other than the intervention being studied

HbA1c reduction: reported as a percentage but is actually the difference in percentage points
Critical Data Table Appendix

<table>
<thead>
<tr>
<th>Study ID</th>
<th>HbA1c *</th>
<th>Change in HbA1c (percentage points)</th>
<th>Blood Pressure</th>
<th>Cholesterol</th>
<th>Weight Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-AUS-1 (Australia)</td>
<td>6.7% improvement (n=7, p=0.0092)</td>
<td>-0.2% for all patients (n.s.), -0.6% for patients with HbA1c >= 8% (n.s.), 0.5% for patients with HbA1c < 8% (n.s.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-ISR-2 (Israel)</td>
<td>8.2% +/- 1.2 to post-study (n=63, p=0.001)</td>
<td>-0.5% for MapTools + weight loss group; -0.6% for MapTools only group</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-ITA-1 (Italy)</td>
<td>8.6% +/- 1.05 (n=63, p=0.05)</td>
<td>Systolic: baseline 138.9 mmHg +/- 1.8 to post-study 140.56 mmHg +/- 1.7; Diastolic baseline 80.8 mmHg +/- 8.0 to post-study 81.04 mmHg +/- 10.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-TAI-1 (Taiwan)</td>
<td>10.8% +/- 1.96 to post-study (n=51, p=0.05)</td>
<td>Systolic: baseline 138.9 mmHg +/- 1.8 to post-study 140.56 mmHg +/- 1.7; Diastolic baseline 80.8 mmHg +/- 8.0 to post-study 81.04 mmHg +/- 10.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-TAI-2 (Taiwan)</td>
<td>8.1% to post-study (n=125, p=0.0001)</td>
<td>Systolic: baseline 138.9 mmHg +/- 1.8 to post-study 140.56 mmHg +/- 1.7; Diastolic baseline 80.8 mmHg +/- 8.0 to post-study 81.04 mmHg +/- 10.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-UK-1 (United Kingdom)</td>
<td>8.6% +/- 1.0 (n=34, p=?)</td>
<td>Systolic: baseline 138.9 mmHg +/- 1.8 to post-study 140.56 mmHg +/- 1.7; Diastolic baseline 80.8 mmHg +/- 8.0 to post-study 81.04 mmHg +/- 10.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-USA-1 (United States)</td>
<td>Reduction of 0.27 percentage points (n=243, p=0.009)</td>
<td>Systolic: baseline 138.9 mmHg +/- 1.8 to post-study 140.56 mmHg +/- 1.7; Diastolic baseline 80.8 mmHg +/- 8.0 to post-study 81.04 mmHg +/- 10.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-USA-3 (United States)</td>
<td>Patients with A1c < 7% who had glycemic control increased 8.7 percentage points in the general population and 18.3 percentage points in the Medicare population (n=5, p=?)</td>
<td>-3.3%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-USA-6 (United States)</td>
<td>Reduction of 0.5 percentage points (n=112, p=?)</td>
<td>-0.5%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-USA-11 (United States)</td>
<td>Reduction of 0.4 percentage points (n=59, p=0.004) at 3 months, Reduction of 0.3 percentage points (n=59, p=0.0075) at 6 months, Increase of 0.04 percentage points (n=58, p=0.08) at 12 months</td>
<td>-0.4% at 3 months; -0.3% at 6 months (n.s.); +0.04% at 12 months (n.s.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-USA-12 (United States)</td>
<td>Reduction of 0.44 percentage points (n=11, p=0.02)</td>
<td>Systolic: 4.3 mmHg decrease (p=0.14; n.s.); Diastolic: 2.5 mmHg decrease (p=0.15; n.s.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Numbers reported are change in HbA1c, as measured by the percentage point difference between the baseline and post-study values.

Conversation Maps® is a registered trademark of Healthy Interactions LLC

041116